DANIEL KOENIGSBERG

JAVA PRIMER FOR THE
IMPATIENT

DANIEL KOENIGSBERG

TUFTE-LATEX.GOOGLECODE.COM

First printing, June 2023

Contents

Hello World 9
Variables, Arithmetic, Operators, Recursion, Loops, and Shit 15
Doubles, Arrays, Strings, Lists, and Bit Operations 27

Object Oriented Programming 41

Dedicated to Frank

A word of warning...

These lessons were written by me several years ago (around 2015) in
order to teach my friend how to program in Java and are presented
"as is." They may no longer represent up to date information on the
state of Java programming and may contain many typographical,
grammatical, and content errors. This content has not been edited
since its creation in any way.

Hello World

Introduction

AN IDE OR INTEGRATED DEVELOPMENT ENVIRONMENT is a tool
which programmers can utilize to effectively program. There is noth-
ing wrong with coding in any text editor you choose, from VIM

to Intelli]. For the purpose of this text I will be making references

to Eclipse which I have no doubt will become quickly outdated by
changes to the Eclipse Ul if it even exists at the time of your reading
this. While we could deal with this problem any number of ways, I
think the most prudent one is to provide the information as a poten-
tial tool and to allow you, the reader, to utilize the insane invention
of the Internet to fill in the missing pieces.

This is not to be cruel or lazy on my part but instead to provide
you with the exact kind of thing you are likely to encounter out in
your travels as a programmer. You will come across many outdated
resources, many lone form posts which ask the exact question you
are asking but without an answer, and many incorrect-but-mostly-
correct solutions. A good programmer knows how to tell the differ-
ence and research the problem. At its heart that is what this book is
about.

Getting Started

We will begin on our quest of understanding by first installing some
form of IDE or text editing program on which to write our code. As
I mentioned before you should install Eclipse if you are unfamiliar
with development environments or are blindly falling along with this
reference (which I do not recommend). You may also need to install
Java on your computer and I leave it to you to figure out how to do
that.

The first thing you're going to notice is that the user interface for
Eclipse is both complicated and frustrating. Later on you'll love it.
On the left there should be a thing called "package explorer."

10 JAVA PRIMER FOR THE IMPATIENT

¢ Right click there.
* New > Java Project
¢ Now click on Java Project and for project name type ZerothLesson

¢ Click on the arrow to the left of the folder icon to open the folder
and then do the same under src

¢ Right click on src,
e New > Package, and name it lesson

¢ Package names are typically one lower case word that describes
their purpose. Don’t worry about this.

* Right click on your package

* New > Class, type the name HelloWorld and make your first class!

It is common practice to name classes using a noun phrase. Cap-
italize all first letters of words in your class names. This is called
UpperCamelCase. lowerCamelCase is when we do not capitalize the
first word’s first letter. This will be used later.

Typically the subject of classes is weightier but in Java you must al-
ways be working in a class. We will not utilize the features of classes
yet, but we will need to write our code in the body of one. We will
return to this later when we talk about OOP or object oriented pro-
gramming.

When eclipse makes a new class it saves the code as a .java file
with the same name. Always match your class name to your file
name. If you decide to change the name of a class, right click on the
file in the package explorer and click re-factor name-space or copy
paste your code into a new class with the appropriate name if you
cannot locate the re-factor option.

Do not simply edit the class name and then try to rename the ;java
file. I have never attempted this but it seems like a huge waste of
time and energy and your friends will probably be embarrassed for
you.

What you should see now:

public class ZerothClass{

}

In Java the public keyword means that other classes in the same
package can access the class you are declaring. The class keyword
declares a class called ZerothClass. ZerothClass is an object, but we
will not use it as such.

HELLO WORLD 11

The following code snippet will not make any sense to you. Type

it, anyway (println is short for print line, the 1 is a lowercase L not a

capital i).

public class HelloWorld {

public static void main(String[] args){
System.out. println ("Hello World!");

Now save your work and right click on the "ZerothClass.java"

file in the package explorer. Right click > run as > java application.

On the bottom there is Problems, Javadoc, Declaration, Console.

Make sure you have console tab selected. Hello World! should have

appeared in this box.

Before getting into what we have just done, look at the Outline box

on the right. You'll notice it says:

HelloWorld
main (String []): void

This is an awesome feature of eclipse. Keep an eye on it as we move

forward. Try to figure out what it does on your own.

Discussion

OK now we can talk about what we just did. The first thing to say

is that we have declared a method (which you may be familiar with

from other programming languages, such as Python, as a function).

To declare a method in Java we must use some keywords and they

can be pretty confusing. So I'll explain what they mean so far. But

first, what is a method?

A method is exactly like a mathematical function. It’s a black box

that performs an operation. Methods have two very important fields,

a return type and an argument(s). If you think of f(x,y) = cat as

a method, the arguments are x and y, and the return type is cat (or

an object of type, animal). Methods take arguments, perform the

code within them, and then spit out the result which will be the same

type of object as the return type specified. You will declare methods

abstractly i.e. f(x) = x2%, not f(10) = 100. Methods are used to

recycle code conveniently.

Now back to the keywords we have used:

e public (for methods): the method can be used by any class in the

same package

e static: the method can only be used within the class.” * When the static keyword is used

on something it means that thing is
unique to the class. All instances of that
class will use the same static method.
For this reason we do not need to
instantiate a member of the class in
order to call the function. You can use
the static keyword on other things

too. The global purpose of the static
keyword remains outside of our limited
framework for now but it is important

IR T

12 JAVA PRIMER FOR THE IMPATIENT

e return type: in this case void: the type of object or primitive that
the method will return. Void means nothing is returned. Void is
kind of a dummy keyword. Void just tells Java that the method
does not actually return something.>-3

* main: this is not a keyword, it is the name of the function. Syntac-
tically, we declare methods with: keywords returntype name(//whats
being passed)/ /some code

Now lets unpack all that other shit we did. First, Brackets []: in-
dicate an array of type whatever (in this case of Strings) is written
before them. String[] is an array of strings. In Java when we de-
clare what will be passed, we declare the type first and then give
it a dummy name (in this case “args”)

In Java in order to execute code we need a main method. This
is always a public static method which returns void. It takes as an
argument an array of strings. Why does it take an array of strings? It
is taking as an argument the array of strings in console! This is how it
knows to run in the first place.

Read more, but ignore most of: http://csis.pace.edu/ bergin/Karel-
Javazed/ch2/javamain.html

Executing Code

The main method is necessary to make a .java runnable and must be
included in at least one of the java files in a package. What is typed
in the main method will execute when the .java file is run. Just as

in other languages, putting anything in quotes means it is a string.
Thus the "Hello World!" bit of our code is a string which has not been
associated with a variable. Another implementation that works is:

public class HelloWorld {
public static void main(String[] args)({
String theString = "Hello World!";
System.out. println (theString);

}

or using an out of scope variable, instead:

public class HelloWorld {
String theString = "Hello World!";
public static void main(String[] args){

System.out. println (theString);

* This is where a stark contrast forms
between f(x) and a method. There are
two types of methods accessors and
mutators. Accessors simply access data.
Mutators change things. Neither type
says anything about the return type,
but we rarely think of a function f(x)
which takes a value x and changes it to
y without us seeing the result.

3 There is not necessarily a preferred
type of method. In functional program-
ming mutators are never used. In most
other cases it is common practice to

use both kinds of methods in the same
application.

HELLO WORLD

"

or creating a new string object; with strings this initializes to "".
When you see a +=b it means a =a + b.

public class HelloWorld {
public static void main(String[] args){
String theString = new String ();
theString += "Hello World!";
System.out. println (theString);

)

or declare a String, in this case it is not initialized and we must ini-
tialize it before use:

public class HelloWorld {
public static void main(String[] args){
String theString;
theString = "Hello World!";
System.out. println (theString);

Further Discussion

What are the brackets({) and shit doing? In Java we put blocks of
code in brackets. Unlike python spacing is not sufficient. In fact
spacing in Java does nothing. It only helps the reader read the code.# 4+ Which is important.
For this reason it is not sufficient to hit enter after a line of code
either. A line of code must end with a semicolon.

In Java = is the assignment operator. Whatever is left of = will be
assigned to whatever is right of =. What are () for? These are used
exclusively for methods (and for order of operations in the classi-
cal sense i.e. PEMDAS). System.out.println is a method which will
take anything for an argument and print it to console. That’s right.

I can create a class called BonerClass and create an instance of that
class called erectBoner and if I type System.out.println(erectBoner);
something will happen. What will happen in this case is that it will
print the representation of the pointer for erectBoner. This is because
Java passes objects by reference. If you want to print erectBoner in
any other way, you need to explicitly make a toString method for the
class, BonerClass.

If you didn’t understand all of this, that’s ok (in fact, you shouldn’t).
You should still read the next bit. What does System.out.print do? It
prints to console. What is the difference between System.out.println
and System.out.print? The former prints a line after printing the
argument. The latter does not.

13

14 JAVA PRIMER FOR THE IMPATIENT

For System.out.print(arg); if we replace arg with ("some shit: "

+ 7) someshit: 7 is what will appear on the console. This is because
of Java’s ability to intuitively concatenate Strings before processing
them.

A quick discussion of Strings and Arrays before we move on: An
array is list of objects with a fixed size. The way an array is imple-
mented in memory is that when the array is declared (and the size
initialized) a portion of contiguous memory is set aside for that array.
When things are stored in an array they are stored next to each other,
so that getting an object in an array is a very quick and simple pro-
cess for the CPU. Key thing to take away here: arrays are sequences
with a fast look up time.

A String is basically an array, except that it is implemented to
serve a different purpose. Strings are stored in contiguous memory
but they also support more operations than arrays. Strings are not
fixed size (at least not in so far as usage) and generally are used for
storing words and messages.

Now you are ready to move on to other shit (arguably you were as
soon as you ran the first HelloWorld method).

Variables, Arithmetic, Operators, Recursion, Loops, and
Shit

Introduction

Now that you know a little bit about how Java works, it is time to
start doing some shit in Java. We will start with variables. Just like
Python you can import libraries from other crap. In fact we are im-
porting print(); and printIn(); from System.out. Pretty cool eh? These
are packages given to you by the developers of Java. You may want
to import Math in this one. Try to figure out how to import Math on
your own. Some IDEs (such as eclipse) are helpful and if you type
something that you need to include, it will underline it. Mousing
over it should give you the option "Import whatever" which will add
code to the preamble of your class. This is not important right now.
You should be able to do everything here without importing Math.

Primitives

Primitives are data types. When you want to declare a variable of

a primitive the syntax is //primitive type// //variable name// =

/ /value/ /; There are several types of primitives but we will only use
int, long boolean, char, and double for now. Each primitive estab-
lishes itself from a concept with which you may already be familiar.
In computers data is stored as binary (1s and os). We call an individ-
ual 1 or o a bit. For data types which need to store more than two
values (e.g. integers) we have larger data types consisting of multiple
bits. The following guide should be helpful in understanding how
many bits are associated with the primitive type.

* byte: 8 bits
¢ short: 2 bytes

¢ int: 4 bytes (we will largely use these or (sometimes) longs for
representation of integer numbers)

16 JAVA PRIMER FOR THE IMPATIENT

¢ long: 8 bytes
® boolean: essential 1 bit, but really just true(1) or false(o)

¢ floats, doubles, chars (additional reading for now)> 5 https:/ /docs.oracle.com/javase/ tutorial /java /nutsandbe

As a rule, the number of values we can store with n bits is 2".
Consider the example where we have two bits, b1bp b; € 0,1. Then
our?2? =4 possible values are 00,01,10,11. How we assign these bits
is up to us in a strictly abstract sense. For the computer, 00 would
represent 0, 01 would represent 1, 10 would represent 2, and 11
would represent 3.

Binary Operators

n_n

In all of the following definitions "=" is the math equals not the as-
signment =. However, anything else, including ==, is explained as a
binary operator. A binary operator is basically a method which takes
as an argument exactly two things. We will return to this idea. We
are also only defining these binary operators in terms of integers.
First I would like to introduce you to the mathematical/logical
concept of if and only if. In order to do this we will need to first
touch on the concept of if A then B. We write this statement sym-
bolically as A — B. In this case — is a binary operator acting on
two booleans, A and B. Intuitively we can think of this as a function

— (A, B). But what does the function body look like?

public static boolean rightArrow (boolean A, boolean B){
if (A && !B) return false;
else return true;

In other words we consider the statement, "If A then B" to be a
true statement as long as B is ALWAYS true when A is true. To think
about this intuitively, we cannot claim "if it rains there is water" if
there is no water but it is raining. However, if there is no rain the
truthiness of the statement remains intact regardless of whether or
not there is water. Do you understand what the symbol, "&&" is
doing?

WHEN WE sAy if and only if we refer to the binary operator charac-
terized by the code

public static boolean ifAndOnlylf(boolean A, boolean B){
return rightArrow (A, B) && rightArrow (B, A);

VARIABLES, ARITHMETIC, OPERATORS, RECURSION, LOOPS, AND SHIT

Again we see that same "and" operator. In case you have not fig-
ured it out yet, that double ampersand is also a binary operator. We
will properly define it below. Intuitively we can think of "if and only
if" as something like an equality. When we say "A if and only if B"
the values of A and B must match. It is the equivalent of saying "if A
then B AND if B then A."

Now that we have a mathematical tool for use in the definitions of
our upcoming binary operators we can commence with the ones you
are more likely to encounter in the coding environment. We will start
with the + operator. For two integers X and Y, X + Y is the additive
sum of X and Y. This is probably not surprising. Similarly - is the
additive inverse operator, or subtraction operator.

Let us instead define subtraction through addition. Let Z be an
integer such that Z + Y = 0.° Then, we can define subtraction as ®Or Y is the additive inverse of Z
X +Z = X — Y. This is why we called - the additive inverse operator.
Subtraction is just addition of the additive inverse.

Now let us introduce multiplication, *. For integers X and Y, X Y
is equal to X added to itself Y times. If we are gluttons for punish-
ment we can use this reliance on addition to define X * Y = Y.¥ X.
Notice that we can indeed define most common binary operators
which we are used to as specific cases of addition.

We define /, the division operator for integers X and Y uncon-
ventionally. In this case Java will return an integer. For this reason I
will express it this way: Let X/Y = Z where Z is also an integer (not
to be confused with a decimal). Then, X - Z*Y = A where A is the
remainder of dividing X by Y in the conventional sense. When using
the division operator with two integer primitives the answer given
will be Z. Decimals are not included and intuitively this is sort of like
finding the number of times Y goes into X without going over. We
will return to a better definition in a second. 1/10 = 0, 11/10 = 1.
We can avoid this by passing decimals (e.g. 1/10.0 = .1).

// The following is pseudo code meant to be intuitively helpful
public static integer integerDivision(int X, int Y) {

\\ Division works in the classical sense with doubles
double x = (double) X;

(double) Y;

x /y;

double y
double Z

\\ Floor is the equivalent of "rounding down" or
\\ truncating the decimals
return Math. floor (Z);

17

18 JAVA PRIMER FOR THE IMPATIENT

You may be saying "well that’s great and all, but how do I get the
remainder?" You will find your answer in the modulo, % operator.
For two integers X and Y, X%Y = Z where for some integer 1, X —
Z = Y % n. That is to say, X%Y is the remainder of dividing X by
Y. Let X/Y = C. Then, X — C*Y = X%Y. Note that it is possible
to reconstruct division with remainder using modulo and integer
division.

public static integer[] divisionWithRemainder(int X, int Y) {

// First declare a results array to contain the two values

int[] results = new int[2];

// In the first position put the value of integer division

results[o] =X / Y;

// In the second position put the remainder
results[1] = X % Y;

return results;

When we want to say two primitives are equal we can use the
equals operator, ==. this is a boolean (equals). For two integers X
and Y, X ==Y is true IF AND ONLY IF (iff) X and Y are equal. If we
want to look for the opposite (i.e. X is not equal to Y) we can use the
unary not operator, ! in conjunction with the equals operator, X I=Y
or (X ==Y), whichever you prefer.

Lastly, when we want to "and" two booleans (i.e. we want to check
that they are both true), a and b we can use the binary and operator,
&&. If we want to check that at least one of them is true we can use
the binary or operator, | |. What if we want to check either a or b?
We would use the exclusive or operator. In this case we can use the
" operator which allows us to check or values on the bits within our
primitives (e.g. 0011 = 11 but 0111 = 10).

This is a bitwise operator, not a conditional operator. The former
performs operations on bits as if they were booleans, the latter on
booleans as we will use them in Java more frequently. As an exercise
try to construct your own exclusive or operator using pseudo code.”

Notice that at this point we have managed to define every integer
operator in terms of addition. This is not a coincidence. In a moment
I will ask you to write methods for almost all of them using only
addition and subtraction. First, I will need to explain recursion, and
before that we will briefly review the if, then, else statements (and
operator).

7 Hint: you can use the not operator, !
on a boolean to get the opposite value
for that boolean

VARIABLES, ARITHMETIC, OPERATORS, RECURSION, LOOPS, AND SHIT

If, Then, Else

You will want to research if statements if you have not used them
before but they are fairly intuitive. The way an if statement works
is that when the computer encounters an if statement it checks the
boolean of the if statement. If the boolean is true, it performs the
associated code. If statements are pretty intuitively simple.

To write an if statement write:

if (boolean){
doStuff ();
}

If do stuff is one line, the brackets are unnecessary and the ";" at the
end of your code will suffice. This is true for else if and else as well.

To write an else if statement is exactly the same. Use the keyword
"else if" not "elif". Else is "else"

Any method which is not void must return something. What it
returns must be of the return type that the method was declared
with. When we type "return x" the method returns x. As soon as the
return code is called, the method call exits. Any code written after a
return statement is unreachable and referred to as dead code.

Programmers may use return statements within if statements to
"break out" of a method if certain criteria are met. They may also use
return statements with an if statement to negate the need for an else
statement. In an example above we wrote

public static boolean rightArrow (boolean A, boolean B){
if (A && !B) return false;
else return true;

}

but we could have written

public static boolean rightArrow (boolean A, boolean B){
if (A && !B) return false;
return true;

If we truly want to write short code we could just write

public static boolean rightArrow (boolean A, boolean B){
return !(A && !B);
}

and there are even other variations which I challenge you to find.

19

20 JAVA PRIMER FOR THE IMPATIENT

Recursion

We call a method recursive if the method calls itself. Take for in-

stance the following code:® 8 it is considered good practice to
capitalize the first letter of words in a
public static void runsForever(int a){ method name, excluding the first letter
if (true) - lowerCamelCase

System.out. println(a);
runsForever (int a);

This code is really fucking stupid. When it runs it checks to see
if true is true (Java knows "true" and "false" as booleans). Then it
calls itself. This will print whatever int is passed to it to the console

forever.9 9 Actually it will stop when it runs
out of memory and throw a "stack

Now I am going to walk you through writing recursive addition © !
overflow" exception.

using subtraction and addition. This code will serve no purpose
except to explain recursion better. First, please note that a + b is
equivalent to (a +1) + (b —1).

Get started by making a new class (it can be in the same project
or you can even start a new project, which I would not recommend).
You don’t even need to make a new class you can type this over your
Hello World code (don’t. Start over from the beginning and remem-
ber to include a "main" method). Do not delete the main method, it is
still going to be necessary.

Now let’s come up with a name for our method. I'm thinking
recursiveAdd will suffice. What arguments will it take? It will need
to take two numbers as arguments. Lets make the argument type for
both, int (we need to declare the argument type in java, just like we
need to declare the return type). Is recursiveAdd a public method?
Yes. Why not. Is it a static method? If we want to call it in the body
of main (which is a static method) it will need to be static, too.

You cannot make a static reference to a non-static method. I won’t
explain this yet, for now just make the method static. Feel free to
research it on your own though. What will recursiveAdd return? It
will need to return a number, let’s make this return type int as well.

What do we have so far? "public static int recursiveAdd(int a,
int b){}." Now we need to write some code to add them. The most
important thing to remember in recursion is that you need a base
case to stop your recursive method from running forever like in the
really fucking stupid method above. We will recursively add a and b
by adding a + 1 to b — 1. When will we stop? We want to stop when
b =0 ("\\"is used for putting comments into code).

public static int recursiveAdd(int a, int b){

VARIABLES, ARITHMETIC, OPERATORS, RECURSION, LOOPS, AND SHIT 21

if (b == o)
return a; \\ on this call a should be equal to a + b

OK we have written our base case. Now we need to make the code
do stuff recursively. As I mentioned we want to add a to b by adding
a+1tob—1untilb—1=0. Lets do just that.

public static int recursiveAdd(int a, int b){
if (b == o)
return a; \\ on this call a should be equal to a + b
return recursiveAdd(a+1, b-1);

}

Can you see how this works? If we passita =1 and b = 2 it will do
the following

1. return recursiveAdd(1+1, 1);
2. return recursiveAdd (1 + 1 + 1, 0);
3. return 1 + 1 + 1; \\ or 3 as it is commonly known.

Is there anything wrong with the code? If you said "no," you're
wrong. What if we pass b = —1?'° We must deal with this case but % an infinite loop will form, make sure
how we do it is left up to us. I choose to think that recursiveAdd you can see why
should only be used on positive integers. However, we will actually

solve this case explicitly.

public static int recursiveAdd(int a, int b){

if (b == o)

return a; \\ on this call a should be equal to a + b
if (b < o)

return recursiveAdd(a - 1, b + 1);

return recursiveAdd(a+1, b-1);

Notice that I don’t use else if statements. Fuck ‘em. While that
might be bad practice, I have rarely seen them used in industry. This
is not because they are useless, but rather because the sacrifice in
speed for using "if" instead of "else if" is compensated for by the
decrease in complexity for human beings to read and understand the
code. I am also using the fact that return will always break out of
our method and any code that happens after return will be forgotten.
This means that the only way to get to the second if is not to fall into
the first if, which is the same usage as else if.

To verify that this method works run the code as follows

public class YourClass {
public static int recursiveAdd(int a, int b){
if (b == o)

22 JAVA PRIMER FOR THE IMPATIENT

return a; \\ on this call a should be equal to a + b

if (b < o)
return recursiveAdd(a - 1, b + 1);
return recursiveAdd (a+1, b-1);

}
public static void main(String[] args){

System.out. println("3 + 8 = " + recursiveAdd(3,8));

"

System.out. println ("5 - 4 =

Now, an assignment for you. Write a recursive function for a x b."*
Also, make an exponential recursive function which raises 4b.

More Operators!

12

++ (DOUBLE PLUS): for an int a, a++ is equivalent to a += 1 is equiva-
lenttoa=a+ 1.

— (DOUBLE MINUS): foraninta,a—isa-=1isa=a - 1.3

?:: this is called a ternary operator. For a boolean q and two objects a
and b, q?a:b will return a if q is true, and b if q is false.

< and <=: quite literally "less than and less than or equal to."

> and >=: quite literally "greater than and greater than or equal to."

Iterative Solutions

There is a type of recursion called tail end recursion. If a recursive
method is tail end recursive, then it can be written iteratively (with a
loop).

+ recursiveAdd (5, -4));

™ Hint: Java will treat your method as
if it is of the type that it is returning.
That’s why we were able to return it in
the previous example. If I had wanted
to I could have had the method return
1+ recursiveAdd(a,b — 1)

2 In this case we are using = as the
assignment operator.

3 These operators are called incremen-
tal operators and they are frequently
used to keep track of how many times a
particular process has run.

Read this to understand tail recursion: http://stackoverflow.com/questions/33923/what-

is-tail-recursion

I will now teach you how to use for loops in Java. The for (s :
set) style works (we can even make our own classes that follow this
style) but we will not focus on it. Instead I will show you what is
different about for loops in Java. Then you can research while loops
on your own (a daunting task!), and do-while loops on your own.
(DO THIS). We are going to learn by example. I'm going to show you
some code and we're going to dissect it. As a challenge to yourself

VARIABLES, ARITHMETIC, OPERATORS, RECURSION, LOOPS, AND SHIT

you can attempt to implement each of these examples in a while
loop.

int sum = o;
public static int sum(int a){
for(int i = 1; i <= a; i++){
sum += 1i;
}

return sum;

The first thing you might ask yourself is: what does this do. It
sums all of the integers up to and including a. The next thing you
might ask is, why did you write sum out of the scope of the sum
method? I did this to show you that you are allowed to do this. It
makes more sense to put the sum placeholder in the sum method.
Why? Even when we do not call the sum method, we have wastefully
allocated memory to the sum integer. Further, if we call the sum
method a second time within the same application, it will be wrong.
This is because it will still retain the sum of the previous call. Do not
do it this way. Put int sum = o; inside of the method. There will be
cases in the future when we want to put stuff like sum outside of the
method. Another thing we can do is as follows.

int sum;
public static int sum(int a)|{
sum = o0;
for(int i = 1; i <= a; i++){
sum += i;
}

return sum;

This time the code is valid, although the declaration of sum before
it is used is still unnecessary and still problematic.

Now on to the for loop. What it do? For loops are written like
this for(initializer; boolean; operation). If we wanted we could
generalize any for loop to a while loop. While loops are written as
while(boolean) and will continually loop until the boolean statement
is false. The above for loop is equivalent to the following.
int i = 15
while (i <= a) {

sum += i++;

What the for loop is it is declaring the first thing and then running
a while loop. After each iteration of the while loop it does whatever

23

24 JAVA PRIMER FOR THE IMPATIENT

is written last. We may also write a for loop without the first and last
argument.
int i = 1,
for (; i <= a;) |
sum += i++;

As an exercise write a method using a for loop which raises a to
the exponential power of b.

Arrays

First let’s note something about arrays. To get the element of an
array, ary in location i (where i is an int) we simply want to type
ary[i]. By convention arrays start at 0. Thus, ary[o] is the first element
in the array called ary.

You already know that arrays are stored in contiguous memory.
I don’t need to tell you that again. What is interesting about being
stored that way is that it is really easy to get from one element to the
next. The computer knows where an array is stored and it is simple
algebra to hop to an array indice. For that reason it is incredibly fast
to get to an element in an array if you know where in the array it
occurs.

We have talked about arrays. Now lets use one. Here is a method
that sums all of the numbers in an integer array:

public int sum(int[] ary){
int sum = o;
for (int i = o; i < ary.length; i++){
sum += ary[i];
}

return sum;

The ary.length returns an integer which corresponds to the size of
the array. Because arrays begin with o, ary[arylength - 1], is the last
element in an array, ary. This is why we only consider i strictly less
than arylength.

The following are examples of syntax for declaring an array:

int[] ary = new int[10]; \\ creates an array of size 10
int[] ary; \\ creates an array which still needs to be initialized
int[] ary = {1,2,3,4,5}; \\ creates the array with elements 1,2,3,4,5

NOTE: THE NEXT QUESTIONS ALMOST ALL INVOLVE PRIMES. YOU
MAY WANT TO MAKE A BOOLEAN METHOD CALLED "ISPRIME"

VARIABLES, ARITHMETIC, OPERATORS, RECURSION, LOOPS, AND SHIT 25

WHICH RETURNS TRUE IFF AN INTEGER IS PRIME AND RECYCLE
IT THROUGHOUT.

1. Now it is your turn. Write a method which prints the first hun-
dred primes. 4

2. Now write a method which logs the first 10 primes into an array,
then sums all of the even indexed primes (you should onsider 2 to
be the first prime). This should be 3 + 7 + 13 ... (ignoring 2, 5, and
11).%5

3. Now write a method which does the same thing without using an
array.'®

4. Write a method for finding the largest int in an int array.
5. write a method for determining if an array is a palindrome.

6. Euler Problems: 1-3 (for 2, do not use recursion; for 3, you will
want to incorporate the use of longs (as opposed to ints) into your
solution).

7. Super Extra Credit: Euler problem 35.'7

4 Hint: you only need to check the
numbers up to p/2 to determine if p
is prime. That is if p is not divisible
by an element less than p/2, then p
is not divisible by an element greater
than p/2. You will want to use the %
operator to determine divisibility

5 Hint: you may want to initialize an
int to use as a pointer to an array index

6 Hint: you may want to initialize an
integer to use as a counter

7 Hint: This problem is an optimization
problem. Run your code on 100 to
make sure it works before ever using
any larger number. You will want to
find a way to decrease the run time

in this problem. It took my computer

5 minutes to solve this with my first
solution. It takes it 3 seconds now that
I have optimized it. I can still optimize
it further. Feel free to stop if you
manage to make it work for the first 100
integers. Optimization is not something
I would recommend focusing on at this
point. Remember what / and % do

Doubles, Arrays, Strings, Lists, and Bit Operations

A Brief Tirade on Doubles

I really fucking hate doubles. Doubles just enable us to do some nice
neat mathy shit with decimals. There are problems associated with
doubles though. Because they are stored discreetly but represent
irrational numbers, two doubles might be logically equal (lets say
they are really both equal to some x/y) without being equal in value.
For this reason we don’t use the == operator on doubles. Instead we
write something like (x - y < .00000001) so that x and y are equal up
to some tolerance for error. Beyond that I really have no desire to
talk about the various issues related to doubles. Read about them on
your own. If you feel courageous try to understand the concept of
machine epsilon.

Learning to Effectively Search the Internet

If you are not familiar with the Math framework, become familiar
with it. You use it whenever you use Math.method. One of the nicest
things about Java is that Oracle provides you with a great API (ap-
plication programming interface). For your basic data structures you
can summon them from the Collections framework (import). But
what is this API and what the fuck is an interface? Interfaces belong
more to the idea of object oriented programming. In Java you have
classes and interfaces but an interface isn’t a term for something
visual like a UI (user interface), it is actually a set of methods. The
iterator interface has three methods.

hasNext ();
next ();
remove ();

That’s all there is to an interface, but I don’t expect you to under-
stand the relevance yet. What I do want from you is to learn how
to google things better using the Java Oracle documentation. As we
start using Strings, StringBuffers, BufferedReaders, and other neces-

28 JAVA PRIMER FOR THE IMPATIENT

sary java classes I want you to be able to find the method you need
without relying so much on websites like stackoverflow.

Using the Java Oracle notation is easy; understanding it is difficult.
Over time you will fill in the gaps but for now do your best to utilize
it. Let’s say for instance you have a string, theString. What methods
can you perform on theString? If you type theString. (with the period
after) eclipse will begin to try to guess what method you’'d like to
use (ctrl + space also should work). You may see a method called
contains() and think "that’s perfect." Maybe it is. Maybe it doesn’t
do what you think it does. How do you find out? Google: “String
oracle,” and click on a link to oracle.com. There’s a common saying
in the tech industry: RTFM or read the fucking manual.

http:/ /docs.oracle.com/javase/7/docs/api/java/lang/String. html

You can see using this example that oracle first describes the
string class. Under the list of constructors are different means of
construction for that object: to construct a new String type "new
String(argument);"

Depending on the argument you use the string is constructed
differently, but the new key word is how you declare a new object
to be placed in memory. As for the allowed methods you can scroll
down further to the list of methods, "Method Summary." Here you
will see a table with what the method returns on the left and the
method name along with its argument on the right. Beneath each
method is a brief description of it. Click on a method to learn more
about how that method works.

Terms and Keywords

TERMS:
e Immutable
* Object

e Primitive

Inherit

e Reference

KEYywoRrbDSs:
* new
e null

e switch

DOUBLES, ARRAYS, STRINGS, LISTS, AND BIT OPERATIONS

Reading Input From the Command Line

Let’s build a method which reads input from the command line and
then returns it as a string. We do not have to use a prompt, but we
will, because otherwise it is not clear to the user when to type into
the command line. I call this method Echo.

public String echo() throws IOException {
System.out. println(Speak into the aether:);
BufferedReader br = new BufferedReader (new
InputStreamReader (System.in));
return br.readLine ();

Check out that method! Can you google it on your own? What
is a BufferedReader and what is an InputStreamReader? What does
the br.readline() method do? Why does it throw an IOException and
what is an IOException?

I won’t answer these questions. This is the sort of HelloWorld
of console input. What I will say is that you may want to make a
method that more than echos. In general for that situation you'll
want to use a switch statement. The switch keyword acts sort of
like a bunch of if statements. In fact you don’t really need to use a
switch statement but it’s nice and convenient. The way it works is
that switch takes a variable like this (assuming that it’s a string)
switch (variable) ({

"n_n

case "1": System.out.println("1 is a stupid choice");

break;

case "2": System.out.println("2 is a good choice");
break;

default: System.out.println("I only care about 1 and 2");
break;

It is not difficult to see what is happening here. The switch state-
ment is checking to see if variable is 1 or 2. If it is neither it lands on
default. That’s sort of like an else statement. What's interesting is
that this works for Strings. If you read up on the switch statement on
Oracle you will understand that this isn’t a fluke, but you probably
won’t understand why I think it’s worth noting. You see Java passes
all objects by memory address (reference). If we have two Strings a
and b, and we check a==Db, it is only true if a and b are EXACTLY
the same object. The strings could be identical and this might re-
turn false. This is true of all objects (non-primitives). For this reason
when comparing objects we use the .equals(); method. In this case we
would check a.equals(b);

29

30 JAVA PRIMER FOR THE IMPATIENT

Arrays, Again? Also, Strings.

Arrays! We did these in the last lesson. What is an array? An array
is literally contiguous memory. When we declare an array we tell the
computer to assign some amount of memory to it. When an array
stores anything besides primitives (recall what these are from the
previous lesson) then it does not explicitly store the object. If we
have an array of strings, we don’t really have an array of strings. We
have an array of pointers to string objects. For this reason arrays of
objects which take up a lot of memory, still take up the same amount
of memory as arrays of objects which take up a small amount of
memory.

Strings are basically arrays of char. You can see this near the very
beginning of the Oracle documentation for strings.

Declaring an array:

int[] array = new int[x]; where x is the size

int[] array; where array has not been initialized

String [] array = new String[x]; a string array

String [] array = {"hi", "cat"}; explicit initialization of a 2 array of strings

What about Strings?! Strings are essentially arrays! (as I have said)
A String is an immutable object. What does that mean? It means
it can not be modified once it has been created. Once we declare an
array we can’t go back and say, no array, I want you to be bigger than
you were before. Similarly once we have a string we can’t change it.
You may say, "but yes we can. I do it all the time. I just had a string
earlier where I did this"

String temp = new String ();
temp += "y";

Why does that work if the string is immutable? Well the truth
is, you aren’t actually changing the string. A new string is being
declared and all of the old string is added to it and then whatever
you are adding to the end. Essentially a String is a sort of wrapper
for a dynamic array. It’s not, really, but it sort of is.

A StringBuffer is a truly dynamic array class. StringBuffers are
like strings except they are mutable. They can be altered without
declaring a new StringBuffer. If you would like to learn more about
how this works I recommend reading up on it in the Oracle Docu-
mentation. The point being that if you have a method where you are
continually altering a string, it will likely be faster and more memory
efficient to use a StringBuffer instead of a String. At the end you can
still cast a StringBuffer to an immutable String.

Strings and StringBuffers have nice features. When reading from
the command line, or even files on your computer, if you read in the

DOUBLES, ARRAYS, STRINGS, LISTS, AND BIT OPERATIONS

items as one of these objects you will not have to worry about the
size of the input overloading the max size of the object (unless you
literally run out of memory) and you will be able to perform meth-
ods on the object which will allow you to utilize the information
better. Strings have a method which allows them to return a sub-
string, and a method which allows them to return an array. If you use
the split() method on a string it will return an array of strings which
occur between each argument passed to split(). If the argument of

split is ", then you will return an array of individual letters from the

"non

string. If you use " " then you will return an array of words. Be wary

"

in the first case as the first " occurs before anything else in the string
and the array returned will have a unique element at the o index.
Will that element be null or an empty string and why?

The null element is actually just a pointer to the location o in
memory. That's why we generally say "points to null" not "is null"
when discussing the null pointer. Actually, I will never call it the null

element again.

Matrices: Arrays of Arrays

As I am sure you worked with these in highschool I will be fairly
brief. The term matrix, is in my opinion, unnecessary, for the pur-
poses of computer science. A nxm matrix is more easily visualizable
than an nxmxI matrix. That is because the latter matrix would need a
three-dimensional representation. You can think of an nxm matrix as
a table with n rows and m columns. In this regard they are useful for
later data structures, but generally speaking an nxm matrix usually is
unnecessary over an array of size n*m. However, you may find your-
self declaring a matrix which does not have a rectangular analogue.
For this reason we shall refer to matrices as arrays of arrays.

The declaration is simple. Instead of int[] we will use int[][]. All
we are doing is making an array of arrays. The latter box represents
the array containing the arrays, the inner box the individual array
(I think).... honestly even at this point in my life I will still confuse
which box is which. That’s why the internet invented stackoverflow.

Whereas in python arrays are dynamic and allow for different
objects to be places in them, a Java array only allows the objects you
declare the array to be made out of originally and is a fixed size. If
we wanted we could bypass both of these constraints in Java, but
they requires us to understand how to create our own objects (i.e.
OOP). However, if we just want our array to take different kinds of
objects it is actually not too complicated.

You see, in object oriented programming there are hierarchies;
Things which subclass each other. For example the BufferedReader

31

32 JAVA PRIMER FOR THE IMPATIENT

constructor takes a reader as an argument but we used an Input-
StreamReader. There are many kinds of readers and they all inherit
from the Reader class. If we wanted to we could make an array of
Readers and have within that array all kinds of different readers. Or
we could do something more crafty and make an array of Objects.

In java every class inherits from Object (meaning falls lower on
the hierarchy than Object). This means that if we make an array of
objects we can put anything we want inside of it. What then is the
problem? Getting those elements out. That leads to an issue called
type casting and we will return to it later.

Dynamic Objects: ArrayLists and Vectors

While it irks me in a serious way to introduce you to a proper data
structure before you even know object oriented programming and
can implement it on your own, the Collections framework provides
you with better, faster versions of the data structures you will later
learn to implement.

The difference between a Vector and an ArrayList is not one that
I can explain well until we understand multi-threading a little bit.
Vectors are considered thread safe and are essentially the same thing
as ArrayLists so for now we will choose only to think and talk about
the ArrayList.

What is an ArrayList? Look it up on the Oracle notation but let me
tell you a little first. An ArrayList is a dynamic array. Beneath the ob-
ject there exists an array which keeps track of its own capacity. When
you try to add an element to the ArrayList and there isn’t enough
space left to do so, the ArrayList declares a new array (likely 2x the
size of the old one), copies over every element from the previous ar-
ray one-by-one and then adds your new element. If space exists it
just adds the element to the end of the array.

What is nice about ArrayLists is that they implement all of the
methods that a list implements. You can insert an element, add an
element, remove an element, whatever. The problem is that an Ar-
rayList, at its core, is still an array. Inserting an element requires us
to one-by-one move every element over to make space (and even pos-
sibly resize). Removing an element is similar. In the worst case we
may need to move every element over and resize. That means that
the time it takes to perform this could be said to be proportional to
the size of the array. However, adding an element to the end of an
ArrayList still takes negligible time as even though the array list may
need a resize (which would take time proportional to the size of the
array), this happens so infrequently that we do not generally consider
it as particularly relevant.

DOUBLES, ARRAYS, STRINGS, LISTS, AND BIT OPERATIONS

Using an ArrayList is pretty simple but understanding how to
declare it will help us understand how to declare objects in Java
which are non-primitives and not so basic as String objects. We will
need to import ArrayLists in order to use them. To declare an array
list of Strings we do the following.

ArrayList<String> the_list = new ArrayList<String >();

What is happening with those brackets? The ArrayList takes a
separate argument for the type of object it will contain. Almost all
objects which require a type of object to be specified are written
this way. We can pass any non-primitive into these brackets and
the ArrayList will be of that type. If we wanted we could make an
ArrayList of Objects and have something more similar to a python
array. However, we cannot instantiate an ArrayList<int> because int
is primitive. How do we work around this?

For every primitive there exists a wrapper class. In the case of
int the wrapper class is Integer. If we make an ArrayList<Integer>
we can add ints to it and Java will do the work of actually turning
them into Integers. For shorts the wrapper class is Short. For longs
the wrapper class is Long. These wrapper classes simply contain the
primitive classes and some methods that are considered beneficial. I
can imagine the idea of a class containing things is a bit difficult to
imagine. This is sort of the crux of object oriented programming. We
create our own objects with their own methods and fields.

The Cosmic Object

Every non primitive inherits from the cosmic object. I wrote this and
then talked about the cosmic object above but it’s worth noting again.
By default every object inherits from the cosmic object. Hence the
name. We can declare ArrayList<Object> and add any element we
want to our array list. Unfortunately, it will still be difficult to retrieve
an item from our ArrayList. We can’t just say

ArrayList<Object> theList = new ArrayList<Object >();
theList. methodWhichAddsElementsOfAllTypesToOurList ();
for (int i = o; i < theList.size(); ++i){

String a = theList.get(i);

What if the ith element of theList isn’t a String? That would be
bad. We will return to this issue later. For now if you do decide to
do things like this it would be best to know exactly what you are
returning. For instance, System.out.println(theList.get(i)); will always
do something. What will it do?

33

34 TJAVA PRIMER FOR THE IMPATIENT

Lists

Let’s look ahead now. A list is a data structure. An abstract list can
have a few meanings but here we are referring to it abstractly as a
data structure, so we are actually just talking about theory. How we
implement a list is irrelevant from what we mean by list. In general
we mean some kind of data structure which holds data in an ordered
fashion.

In Java there is a list interface. Feel free to check out the Oracle
reading on it but interfaces still are pretty far ahead of us at this
point. In some regard the methods that the list interface contains are
what Oracle feels describe the functionality, abstractly, of a list data
structure.

Here we will discuss the concept of a linked list. Now we are re-
ally getting into the meat of things. Again, we are just talking about
list data structures. I could introduce linked lists and doubly linked
lists the same way I did arraylists but instead I will just tell you how
they are implemented and let you try to figure out when to use them.
Later, we will talk much more about them.

A linked list is a list data structure with all of those nice list meth-
ods (use Oracle) but underneath all of this a linked list is really a
bunch of list nodes. These list nodes contain a generic data type (the
objects they store) and a pointer to another linked list node. In a
singly linked list each node has a pointer to the next node and that
is it. What's good about this? Insertion is really simple. We don't ac-
tually need to move things over we just put a node in the right spot.
What's slow? Well the way the computer passes linked lists is by a
reference to the head of the linked list. In other words if you want
to find an element at location i, unlike in array lists, it requires you
to iterate one-by-one through the list until you get there. Adding
elements to the end of the list is similar. We must start at the begin-
ning, work to the end, and then append the last element. However,
appending elements to the front of a linked list is incredibly fast.
Operation on the front of a singly linked list are really fast in general.

LinkedList<Object> the_list = new LinkedList<Object >();

Doubly linked lists are exactly the same as linked lists except each
list node has a pointer to next element and a pointer to previous
element. The added functionality is that we can traverse backwards
and forwards. The cost is that each list node now has more memory
allocation. Doubly linked lists are less frequently used than you
would think. Most of the problems solved by adding a backwards
link can be solved using a singly linked list with a more intelligent
algorithm.

DOUBLES, ARRAYS, STRINGS, LISTS, AND BIT OPERATIONS 35

Some More Bitwise Stuff

The computer stores data in actual binary. All bit operations work in
boolean logic. They treat a 1 as true and a o as false. In that regard
0001 "and’ (&) 0000 is 0000. That is to say 0 & 0is 0,0 & 1is 0, and 1
& 1 is 1. This may seem complicated. We are returning the truthiness
of the statement "true and true," which is true for "1 and 1." Here are
the basic bitwise operators.

(http://docs.oracle.com/javase/tutorial /java/nutsandbolts / op3.html)

OPERATORS

«: shifts everything to the left (puts a o at the end). 8

Ex: a « b shifts the bits in a over, b times. Thus, 2 « 1 is 4 (repre-
sents 0010 « 1 = 0100).

»: shifts to the right, may put a o or a 1 in the leftmost position
depending on the sign of the int.

»>: shifts to the right, will always put a o in the leftmost position.
Where does Java store the sign of an integer in the binary? Which
bit contains that information?

&: Similar to the ‘and’ that you are familiar with, but one amper-
sand instead of two. If we "and’ two ints, wherever they are both 1,
the result will be 1 and everywhere else the result will be o.

% Generally called the xor operator this is the “exclusive or” opera-
tor. When we say (a or b) sometimes it is unclear what we mean.™
In the case of exclusive or (or xor) we only allow for (t"f) and (f"t)
to return a true value. In this regard when we xor two ints, wher-
ever they both differ the result will be 1 and wherever they are the
same the result will be o.

Ex: 1010”0101 = 1111 and for an bit or int a, a”a = o.

e |: The regular ‘or’ operator we are used to. If we ‘or’ two ints,
everywhere where either one of them has a 1, the result will have a
1. The result will be o everywhere where both ints had 0s.?°

¢ : Called the unary bitwise complement operator. We will call
it the 'not” operator. When we not an int we just reverse every
bit. The reason we call this a unary operator is because it acts
only on one int. In every example above the operators required
two arguments. They were binary operators, or binary bitwise
operators (not binary binary operators).

Ex: 1010 = 0101 and a"a = o, always.

3 In binary this is the same as multiply-
ing by 2 but because of the way ints are
represented in binary the results may
not be the same. The leftmost binary
number can store the sign, depending
on the data type.

9] have told you that in Java if turns
out to be true, Java doesn’t even bother
checking b. This is the non-exclusive or
version.

2 The choice of representation is arbi-
trary. If we chose to represent true as
o and false as 1, but demanded the |
operator act in the same manner, the |
operator would just be the ‘and” opera-
tor. What I'm saying is, & is to 1 as | is
to o.

Ex: 1010 | 0100 = 1110. SO as you can
see the result is only o wherever both a
and b are o.

36 JAVA PRIMER FOR THE IMPATIENT

It is important to be able to interpret binary numbers. Numbers
written in any base are just a variation on modulos in some regard.
When we work in base n, a number a % n is always the last digit rep-
resentation of that number.?" To retrieve a number from binary and
turn it into base 10 we can describe an algorithm. We will choose to
write our binary numbers the same way we write our base ten num-
bers. The leftmost digit will be of the highest order and the rightmost
digit will be of the lowest order. When we write a number base n we
write it as a series of symbols or digits A = a,, — 1, - -, a1, a9 where
the symbols 0 < 4; < n for any i < m and the series A is m in length,
the series represents a number given by

(@ # 0") +-o (a) + (ag 1)

In this regard, the last digit is always the one’s place. In binary we
can take a number bybgbsbsbsbyb1bg in base two and convert it to base
ten by multiplying each digit by 2i, where i is the index in the binary
sequence, and adding them.

10101010 =1 %27 +1%254+1%234+1%21 =128 4324842 =170

22

Note that 2k = 2 * 2k — 1 by simple math. Because Java stores
the sign of a primitive in one of the bits*3 the maximum value of a
signed primitive is strictly less than 2k where k is the number of bits
in the primitive. So what is the maximum value of a binary sequence
of length 2k — 1? Well it is 1 less than the value of 2k. If you can’t
see this just imagine we have a sequence of all 1s with a leading
o. If we add 1, the sequence is just a leading 1 followed by all os.
0111 + 0001 = 1000, is the same as 0999 + 0001 = 1000 in base 10
(different numbers, same concept). For this reason the maximum
value of a primitive with k bits is 2k — 1 but what is the smallest
value? The smallest value is expressed as all 1s, but it would be silly
if it were the same size. When we considered all the positive values
we included o, but negative o is still 0 and there is no reason for
10000000 to be equal to 00000000, so the smallest value is just -2k for
a primitive with k bits.

ComMmMoON Bit FUNCTIONS
¢ Get Bit

e Set Bit

e (lear Bit

¢ Update Bit

> I say digit, but digit is the wrong
word. The word digit refers to base 10.
If we are working base 2 the last digit
is really called the last bit. However,
we will use the word digit to refer to

a symbol in a system which refers to a
number strictly less than the base it is
being represented in. This is not really
math; it’s meta math. We are talking
about representations of numbers, not
the numbers themselves.

2 This is a byte (8 bits) and as you can
see it isn’t capable of storing numbers
which are all that large.

» you should know which

DOUBLES, ARRAYS, STRINGS, LISTS, AND BIT OPERATIONS

Write these methods on your own, expressing a number in any
base you’d like.

public ArrayList<Byte> toBaseN(int number, int base){
ArrayList<Byte> the_number = new ArrayList<Byte >();
int temp = number;
while (temp > o0){
the_number.add ((byte) (temp % base)); //See explanation.
temp /= base;
}

return the_number;

This method will spit out an array list of bytes, thus our base
should never exceed the maximum size of a byte + 1 (128). The Byte
is the wrapper class for byte, making it non-primitive. We cannot
declare an ArrayList of primitives, as always.

The line I marked "see explanation” has a weird argument in the
add() method. In the argument it would be sufficient to just write
temp % base if the ArrayList were of Integers, as temp % base returns
an int. However, the add method for an ArrayList of Bytes needs to
take a Byte or byte argument. In order to do this we are typecasting
the int returned by temp % base to a Byte. This is the syntax for type
casting, a concept which we will discuss later. What will happen
if our base is something larger than 128, for instance 1000? We can
avoid this case by adding code to the beginning of our method which
stops it from attempting to run in that case.

What we have done is we have said "treat this int as a byte." This
is not a problem because a % b returns a positive and because what
is returned is always less than 128, meaning the leading bit of the
newly casted byte will always be o (so we don’t have to worry about
negatives). This does not work for negative numbers as the while
loop will never run. I never like to give you fully functional code.
Your job is to see what’s wrong with it and think about fixing it.

You may also feel that this particular method of storing a num-
ber is not to your liking. The representations of digits larger than g
will still occur in base 10, thus if our base is 11, we may find some
of our digits are represented as 10. If our base is 128, some of our
digits (some of the elements in the array list) may be as great as 127.
We also have our lowest order digit occurring at index o, which is a
choice that may or may not be a good one depending on the intended
usage.

PRE-EXERCISE QUESTION: What is the worst case runtime of this
method? That is, where n is the size of the number, and m is the size

37

38 JAVA PRIMER FOR THE IMPATIENT

of the base what is O(n,m)?4? This is a somewhat difficult question.
Ask yourself how many times the loop runs when m is 2, now 3, now
generalize to m. In multi-variable math it is often easier to see what
the function looks like in one variable for specific cases of the other.

For instance f(x,y) = x? + y? is sort of like a cone. We know
that x2 + y?> = 2 is the equation of a circle with radius 7, but when
we consider x> + y?> = z, and allow z to be variable, the problem
becomes more difficult. All we need to do is see that for any z, we
have a circle of radius sqrt(z), so as z increases we have larger and
larger circles. The radius increases as sqrt(z) so the function isn’t
really a cone. It’s more like what would happen if we took z = y?
(or y = sqrt(z)) and rotated it around the z axis to make a solid
shape. Recall that y = x? is the formula for a parabola. This is called
a hyperbolic paraboloid and we have only considered its behavior in
the positive z direction.

http:/ /ltcconline.net/greenl/courses/117/DerivNvar/surfac1.jpg

Exercises

1. What do I mean when I say Java passes objects by reference?
2. Make a program using a switch statement somehow. Impress me.

3. Let’s say I wanted to insert a number into an abstract list of num-
bers. What data type would I use to do this? Array, ArrayList,
LinkedList, or String? Why?

4. Write a program which takes a number and turns it into an Ar-
rayList of digits.
Example: 13425 should give the ArrayList 5,2,4,3,1 or 1,3,4,2,5

depending on your preferences.

5. What benefit could be obtained by expressing a number as an
ArrayList instead of as an Array, String, or primitive?

6. I assume you used an ArrayList<Integer> (Integer is the wrap-
per class for int). Are there any other data types besides Integer
which would work? Why would(/wouldn’t) you use that data
type instead?

7. Project Euler Problem 16. Try to do this without using Strings.
8. Project Euler Problem 22. To sort a list you can use the Collec-

tions.sort(list) function.

Bonus: What is the run time of the following algorithms?

> that’s right, the function will be in
both n and m

DOUBLES, ARRAYS, STRINGS, LISTS, AND BIT OPERATIONS 39

9. What is the worst case run time of inserting an int into an array?
Describe the worst case situation.

10. What is the worst case run time of inserting into a string? String
buffer?

11. Describe the worst case situation for inserting an int into a singly
linked list. Describe the best case.

12. I've given you an array of ints. I ask you to sort them. Write a
pseudocode algorithm to sort the array. Describe the worst case
scenario. Describe the best case scenario.

Object Oriented Programming

TERMS
¢ inherit - A subclass inherits methods and fields from a superclass.

e subclass - A variation on a class which shares all of the same fields
and methods but also has its own fields and methods.

* superclass - A superclass is just the opposite of a subclass.
e constructor - A method which initializes an instance of a class.

* override - A subclass or a class which implements an interface (or

both) can override methods.?> % The method signature must be the
same (return type, keywords, argu-
ments). By changing the method body,

. we can change what the method does
or argument. Java knows based on the usage which one you are on an instance of the class.

¢ overload - Two methods of the same name which differ in type

referring to, or else you fucked up.
¢ garbage collection - Research this.

¢ interface - A set of methods and variables which you can declare
in the interface. Methods are declared but not implemented in the
interface.

¢ abstract class - A class which can not be instantiated outright.
It can be subclassed and generally has its own abstract methods
which can be overridden by subclasses. Similar to an interface, but
a class.

* type casting - Taking a superclass and telling Java to treat it as one
of its subclasses. It is important to typecast to the correct class.

KEYWORDS
e abstract - Can be called and written by subclasses.

¢ public - Can be called and (for variables) modified anywhere.

42 JAVA PRIMER FOR THE IMPATIENT

e private - Can be accessed by methods of the same class, inner-class
methods, and inner-classes of the outer-class.

e final - of a variable: cannot be changed. Of a reference: cannot
point elsewhere. Of a method: cannot be overridden. Of a class:
cannot be subclassed.

¢ static - Can only be called by the same class. Ubiquitous through-
out the class.

* protected - Only classes in the same package can use it.

¢ try/ catch - Tries to execute code and dictates behavior upon en-
countering specific errors.

¢ finally - Always executes after the try block exits.

e finalize - E.G. "protected void finalize() throws Throwable." Garbage
collection calls finalize() right before deleting an object. It can be
overridden to add exit behavior for the object.

¢ throw(s) - For error handling. Research this.

What is an Object?

This is sort of a tough question. This entire time we have been cre-
ating objects and you didn’t even care. Basically, an object is an in-
stance of a class. A string is an immutable object. We have discussed
this, but there are other kinds of objects.

Let’s say we want to make our own car object in Java. Better yet,
let’s say we want to make a program for a dealership so that they
can keep track of their inventory and all of the other shit that they
have to keep track of when running. How would we do that? Well
we’d make a new .java file and name it Dealership.java or something.
In there we would declare it as a Public Class Dealership, just like
eclipse does for us automatically. As an example I wrote a dealership
class.

public class Dealership {

public int register = o;
public Car[] inventory;
public Employee[] salespeople;
public Person|[] occupants;

// class
public class Car {
public String make;

public

public

public
}

// class
public
public
public

}

// class

public class Employee extends Person {

String model;
int value;
boolean sold =

class Person {
int wallet;
String name;

false;

public int sales_this_year;

public
}

int charisma;

// Dealership constructor
public Dealership (Car[] inv, Employee[] workers){
inventory = inv;

salespeople = workers;

occupants = workers;

// methods

public void addPerson(Person the_person){
int length = occupants.length;
Person[] temp = new Person[length + 1];
for (int i = o; i < length; ++i){

temp[i] = occupants[i];

}

temp[temp.length] = the_person;

occupants = temp;

}

OBJECT ORIENTED PROGRAMMING 43

public Car sellCar (Car the_car, Employee seller){

for (int i = o; i < inventory.length; ++i){

if (inventory[i].equals(the_car) && !inventory[i].sold){

inventory[i].sold

register += inventory[i].value - 5;
seller .sales_this_year++;

= true;

seller .wallet += 5;

return inventory[i];

44 JAVA PRIMER FOR THE IMPATIENT

}

return null;

public void hire (Employee candidate){
String the_string = "";
if (candidate.charisma < 4) {
the_string = "Sorry "
+ candidate .name
+ ", we just arent hiring.";
}
else |{
the_string = candidate.name
+ ", you're hired!";
Employee[] temp = new Employee[salespeople.length + 1];
for (int i = o; i < salespeople.length; ++i){
temp[i] = salespeople[i];
}
temp[temp.length] = candidate;
salespeople = candidate;

}
System.out. println (the_string);

The first thing we need to know about classes is that they contain
fields. In my version of a dealership I have included the following
fields.

* register

* inventory
¢ salespeople
® occupants

Just like how the line of code "array.length" returns an int value of
the array length, if we instantiate a Dealership called dealer, we can
find the register value by finding “dealer.register”. Unlike an array,
because we have declared all of these fields as public, we can also
change the values.

In essence what makes up a class is a set of fields and a set of
methods. The methods declared within a class are generally meant
to act on the class. It is atypical to leave the fields of a class as pub-
lic. We would generally make the fields private, meaning that they

cannot be altered by other classes.?®

6 Imagine if you could change the
length field of an array. That would be
bad, wouldn't it? The array would think
whatever is next to it in memory is

part of the array if we made the length
longer. If we made it shorter we would
merely truncate the array.

OBJECT ORIENTED PROGRAMMING

Classes also must have a constructor method. Java recognizes the
constructor method as the method of syntax:

keywords classname (arguments){}

The constructor method is how the class is instantiated. When you
call Dealership dealer = new Dealership(arguments), the constructor
method is called and determines the initialization of the class in-
stance. In this case you can see that the dealership constructor takes
an inventory and list of employees. It then initializes the dealership
to have the inventory passed to the constructor, the employees passed
to the constructor, and occupancy of the employees.

This makes sense, we want to consider the employees as occupants
and any time we change the employees we want to change the oc-
cupants. Within the Dealership class are some nested classes. They
act the same as other classes but do not call for their own .java files.
None of them even have their own methods.

Some of these classes extend other classes in the file. What does
extends mean? It means that an employee is just a more specific
kind of person. Employee has the same fields as Person and then a
couple more. In this regard we can have an array of Occupants, all
of which are people and some of which are Employees. A danger
arises however when we try to retrieve elements from that list. We do
not know if they are employees or just regular people. Read up on
typecasting. I will not describe it here but it is vital.

Beyond that you can see that I have included some methods. These
are methods like .size() for a string. When you declare a Dealership
you can use these methods on it. Static methods act regardless of
instance of a class. Non-static methods are specific to a class. If you
declare a method as static, make sure it doesn’t modify the fields of
your class unless they too are static fields®’. A static field is the same 27 If they do, it is still potentially a

in any instance of the class. dangerous implementation

Interfaces

In Java we don’t have multiple inheritance. This means that no class
can extend more than one other class. However, a class may imple-
ment from as many interfaces as we would like. Just like classes we
can make our data types of type interface. For instance, look up the
list interface. If we wanted to we could make the argument of one of
our methods a list. Any class that implements the list interface can
be passed as an argument to that method. This can be complicated.
We may try to do things to the list which are disallowed. It is always
important to keep in mind what kind of object you're passing. Some-
times we as programmers choose to program fool-proof methods.

45

46 JAVA PRIMER FOR THE IMPATIENT

Sometimes we take the knowledge of what is being passed and al-
low for errors to occur that we are certain can never occur. If you are
passing that method a combination of array lists and linked lists then
you know what the method can handle, but make sure that it will
never be used for other classes which implement the list interface.

Let’s Build a Cyclic Array

As an exercise let’s make a cyclic array class. This array class will be
an array but for a size n cyclic array we will consider the the i*" index
(i < n) to be the (i +n)!" index as well?®. The array is a cycle. We * That is to say, the 0" index in the
will want one more quality, though, for our Cyclic Array. We want it array oceurs after the (n —1)* index
to work with the command syntax "for (int a : cyclicarray)”, too.
In order to do this we need to make our CyclicArray class imple-
ment Iterable. Iterable is an interface with one method, the iterator
method. The iterator method returns an iterator, which is another
interface. In this case we will need to make our own iterator, too. I

understand that this is complicated so we will take it in pieces. First

we will make a cyclic array class and then we will make it iterable®. * You may be curious how to make
our cyclic array class take objects other
public class CyclicArray { than ints. We will get to this using a

. . different example, but for now we will
private int [1 ARRAY; only make an int based cyclic array for
private int HEAD = o; simplicity.

\\Constructor

public CyclicArray (int size){
\\Sets ARRAY to new array
ARRAY = new int[size];

private int convert(int index){
if (index < 0){
index += ARRAY.length;

}
return (HEAD + index) % ARRAY.length;

public void rotate (int shift_right){
head = convert(shift_right);

public int get(int i)f{
if (i <o Il i >= ARRAY.length){
throw new java.lang.IndexOutOfBoundsException(Index

OBJECT ORIENTED PROGRAMMING

out of bounds.);

}
return ARRAY[convert(i)];

public void set (int index, int value){
ARRAY[convert(index)] = value;

At this point we have a functional CyclicArray class. This class
does not behave like a list, but rather like an array. We can put ele-
ments in wherever we want (for any int index) but they will appear
somewhere in the array pertaining to its size. The convert method
allows us to convert an index into its proper location in cyclic array
as I described before.
The rotate method allows us to change the first element of the
array while maintaining a cyclic array. We do not allow for someone
to call get(i) on an index i which is larger than the size of the array.
This is unnecessary but in my opinion a logical choice. While we
could easily translate any input into a proper element in the array, we
choose to treat the get method as a method for retrieving an element
in a fixed size array, because we are indeed working with a fixed size
array.
In general, for any private field in a class we tend to want get-
ter and setter methods. We could easily give the user the ability to
modify and check our fields by making them public, but instead we
have chosen to make them private and control access to them with
a set of chosen public methods. As the user should never need to
call convert themselves, we have made convert private. I can’t really
anticipate any problems with making convert public but I can’t see a
benefit. Like the standard array, our constructor asks for an array size
and nothing else. While you may be thinking, "typically I also have
to give the type of array," we have simply chosen to limit our cases
to ints in order to focus on interfaces and classes. To make classes
which are less restricted we need to learn about generics more and
talk about type casting3°. 3° This can be an extremely arduous
We have succeeded in making a functional cyclic array class but process so I ask that you do NOT
we have not made it work for "for (int a : cyclicarray)” and this is into a generic class yet. I DO expect

attempt to make the cyclic array class

47

where we learn about interfaces. Just like magic once we implement you to do this at the end of the section

Iterable properly, the class will work for this syntax. Pretty cool, huh? error handling may prove helpful in
Let’s do it. For the sake of brevity I won’t be typing out all of the that matter, as well.
methods we just typed, again. You can just assume they’re there if

they’re unmentioned.

on generics. Discussion of enums and

48 JAVA PRIMER FOR THE IMPATIENT

public class CyclicArray implements Iterable <Integer >{
private int[] ARRAY;
private int HEAD = o;

\\Constructor

public CyclicArray (int size){
\\Sets ARRAY to new array
ARRAY = new int[size];

}

private int convert(int index){

if (index < o0){

index += ARRAY.length;
}

return (HEAD + index) % ARRAY.length;
}

\\ More methods.

public Iterator <Integer> iterator (){
\\this keyword calls this instance of the class
return new CyclicArraylterator (this);

}

private class CyclicArraylterator implements Iterator <Integer >{
private int _current = -1;
private int[] _items;

public CyclicArraylterator (CyclicArray array){
_items = array.ARRAY;
}

public boolean hasNext (){
return _current < ARRAY.length - 1;

}

public Integer next(){
_current++;
int item = _items[convert(_current)];
return item;

public void remove (){
String errorMessage = "The remove function is not supported”;
throw new UnsupportedOperationException (errorMessage);

OBJECT ORIENTED PROGRAMMING 49

When we implement an interface we must use all of the meth-
ods that come with it. The Iterator method demands that we have a
method called iterator which returns an Iterator. The interface has a
type, and so does Iterator. This is what the iterator iterates over, not
the data structure it is iterating through. We cannot have primitives
as a type in these cases so we use the Integer wrapper class. While
we are essentially done by simply having the iterator method, it is
insufficient to do nothing after that. The iterator method must return
an object which implements the Iterator interface. The iterator inter-
face includes three methods. The methods are: hasNext, next, and
remove3’.

The next method must have a return type which agrees with the
type of the Iterator interface. We use current as a place holder to
keep track of how many elements we have cycled through. It is ap-
parently common to use leading-underscores for fields which occur
in nested classes. You may test this class. As long as it’s in the same
package as another .java file, you can even call it as a data struc-
ture. It is particularly un-useful but you may find a use for it one
day. Making this class function with generics is no small task. You
may want to try to find a way to make it so that calls to “for (int a
: cyclicarray)” start from the head. To do this you would just need
to modify the constructor method so that _items is an array with a
different ordering of the elements. There may be other ways, too.

Enums

An enum is sort of like a class. Basically it’s a way to set values to
keywords, or as my friend Zack put it, "more like keywords to val-
ues." Enums can have a lot of different uses but here’s my favorite.
Lets say we have a class Person and we want Nerd, Jock, and Goth
to all be subclasses of Person. Person is thus the superclass of Nerd,
Jock, and Goth. Now imagine we want to make a School class. Not
that kind of school class. In that school class we’ll want to have a list
of students as a field. It makes the most sense to make that a List of
People. Now imagine we want to take a person from the list and ask
whether they’re a Nerd, Jock, or Goth. While each element contains
the fields which separate the three subclasses, Java has no way of
knowing which is what. Type casting allows us to cast a Person to
the right subclass but we need to know what the right subclass is. An
easy solution is to create an enum32.

3 You can probably guess why this is
important when trying to make the
cyclic array class function for "for (int a
: cyclicarray)". It will start somewhere
and then call next as long as hasNext
returns true. Luckily we do not need to
make a remove method to do this.

3 Or we can call .getClass() on the
object. Enums are probably the least
applicable or useful means of type
casting but I prefer to use it as an
example because Enums are kind of
boring.

50 JAVA PRIMER FOR THE IMPATIENT

public enum SocialClique {NERD, JOCK, GOIH}

Now in the Person class we can include a field of type Social-
Clique and use its value to type cast our person to the right subclass.
This can be accomplished using a switch statement33.

Error Handling

What's the best way to error handle? I don’t know. That’s a design
decision. You can make your own exceptions. You can see from
above how to throw an exception. Sometimes you throw a new ex-
ception. Sometimes you need to declare what type of exception a

method throws. Lets say we have a method Q which may or may not

throw an exception. If we call it within another method P we have
two choices. We can surround our call to method Q (within method
P) in a try/catch statement, or we can say

keywords methodP(\\stuff) throws BlahBlahException {}

and leave the try/catch block to the very end. This is probably the
best choice. It is good practice to include a stack trace. This lets the
user know where the exception was thrown. I could drone on about
error handling, or you could read up on it on your own. As it is not
of particular importance to learning conceptual programming, I will
leave it to you to follow up34.

Generics

To quote myself. "Fuck generics are complicated and easy all in
one." You may be better off just reading the oracle documentation
on generics to really thoroughly understand them.

For a brief example lets make a weird data structure. Lets make a
data structure which is minimally a list. What do we need to make
a really minimalist list? A list is just a sequence of ordered elements.
Because we want to talk about generics we won't even say what type
of element, we'll just say elements. What do we want? We want to
make a data structure which contains an element and some kind of
sequencing mechanism. You may think a good way to do this is to
simply make a data structure of elements and indices. We could po-
tentially do this if we had some other data structure keeping track of
the indices, but this is not minimal enough. To maintain sequencing
we'll just make each data structure have two fields. It will contain
the element we are talking about and a reference to another data
structure of the same type3>.

public class ListNode<T>{

% You may want to read up on enums
on oracle, as well as switch/case and
type casting if you haven't yet.

341 do want to tell you about try/catch
blocks. They aren’t really try/catch
blocks, they’re try/catch/finally blocks.
When we use a try block the code at-
tempts what is in the try block and
catches errors in the catch block. How-
ever, the finally block always runs
immediately as the try block exits.

The importance of a finally block will
remain unclear until you encounter
things like threading. For now lets say
you want to read a file in a try/catch
block. Even if an error is thrown, you
may still want to do stuff to the file.
You may want to guarantee that the
file reader closes. To do this you would
write .close() in the finally block.

35 Recall that this is called a linked list.

OBJECT ORIENTED PROGRAMMING 51

public T data;
public ListNode<T> next = null;

public ListNode (T datum){
data = datum;

public void add(T element){
ListNode<T> head = this;
while (head.next != null){
head = head.next;
}

head.next = new ListNode<T>(element);

public void print (){
ListNode<T> head = this;
'= null){
System.out. println (head.data);
head = head.next;
}
System.out. println (head.data);
}

while (head.next

We parameterized the generic at the very beginning as T and then
just passed T throughout as our data type. This is sort of the essence
of how generics work. You can try this class out on strings and ints.
Anything that system.out.print will print, the print method of this
class will work on. We can be more specific about our generics and
that’s for you to read up on. For instance we can say that our generic
T must extend some other class or be a superclass of something. This
version of a LinkedList is a terrible way of writing it, but it serves as
an example.

To test your knowledge you may choose to modify our cyclic array
class to allow for an array of any type.

Making Our Own Objects

Sometimes it is helpful to make your own objects just to help you
with all of your work. For instance we could have a class called
Primes with a static method called isPrime. Because isPrime is static
(always the same) we don’t need to instantiate a Primes object to call
it. As long as isPrime is a static method within Primes we can use

52 JAVA PRIMER FOR THE IMPATIENT

Primes.isPrime(potential Prime).

Make a class called Duration which is capable of checking how
long a block of code within it lasts. Ideally Duration.start(); should be
called before your code, and Duration.end(); after it. Duration.end();
should spit out the time difference from the start call to the end call.
As you can see you will want to make start and end static methods.
How will you store the time variables in the class? Will you make
them static or not static? Will you make them final or not final? Pub-
lic or private? You can use System.nanoTime(); which returns a long
representation of the time, but try to clean it up and make it as hu-
man readable as possible.

Making Our Own Interfaces

Sometimes we want to make our own interfaces. This is complicated
and the reasons vary. It is best to look at this through an understand-
ing of Object Oriented Design (OOD) and design patterns.

DESIGN PATTERNS3® 3 Read up on these at your leisure, it
should be difficult and take time to

e Sin gl eton convince yourself of what they are
doing.

¢ Factory

e Decorator

e [terator

Exercises

1. Make your own version of array list and call it MyArrayList. It
should take a generic argument for the type of data being stored in
the array list. The array list will be comprised of at least two fields,
an array (initialize to whatever size you want), and an int pointer
to either the last element in the array, or the empty spot following
it. Make an add method. This method should resize the array to
double its current size whenever the array is roughly 75% full.
Make a get method which returns an element at the i*" index of
the array. Make an insert method which inserts an element at the
i" index in the array and moves every element after the i index
over one index. Make a set method which changes the value of an
element at the i index of the array.

2. Now make MyArrayList work for "for (<T> a : arraylist)37." 3 You may find it easier to create
a private "refactor" method which
resizes the array and moves all of the
old elements into the new array. This
problem should take you a very long
time.

OBJECT ORIENTED PROGRAMMING

3. Using your favorite search engine, how would you make the Col-
lections.sort() method work on an instance of your MyArrayList
class? You don’t need to do this. Just explain how if it is possible.

4. Project Euler Problem 40

EnD Norte: this is typically the end point for an introductory course
in Java. The reason we have been able to move so quickly is because
we have focused heavily on teaching through immersion. What we
have covered so far is by no means a substitute for a proper Java class
in an academic environment, but we are focusing on big concepts
rather than precision.

53

	Hello World
	Introduction
	Getting Started
	Discussion
	Executing Code
	Further Discussion

	Variables, Arithmetic, Operators, Recursion, Loops, and Shit
	Introduction
	Primitives
	Binary Operators
	If, Then, Else
	Recursion
	More Operators!
	Iterative Solutions
	Arrays

	Doubles, Arrays, Strings, Lists, and Bit Operations
	A Brief Tirade on Doubles
	Learning to Effectively Search the Internet
	Terms and Keywords
	Reading Input From the Command Line
	Arrays, Again? Also, Strings.
	Matrices: Arrays of Arrays
	Dynamic Objects: ArrayLists and Vectors
	The Cosmic Object
	Lists
	Some More Bitwise Stuff
	Exercises

	Object Oriented Programming
	What is an Object?
	Interfaces
	Let's Build a Cyclic Array
	Enums
	Error Handling
	Generics
	Making Our Own Objects
	Making Our Own Interfaces
	Exercises

